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Study Trial location 
and date 

Arms included Number of 
data 
points 

Number 
of Huts 

Mosquito counts per 
hut per night (mean, 
m, and dispersion, k) 

Time(s) at 
which 
mortality 
recorded 

Variance of random effect(s) 

Observation  

(p value for Chi-
squared test)* 

Hut Sleeper 

N’Guessan et al. 
(N’Guessan et al. 
2016) 

Cové, Benin; Oct 
2014-Jan 2015 

UTN, Chlorfenapyr, 
Interceptor (0W, 15W, 20W), 
InterceptorG2 (0W, 15W, 
20W) 

584 8 m=10.3, k=1.24 24hrs, 72hrs 0.6 

<2.2e-16 

0.02 - 

Ngufor et al. 
(Ngufor et al. 
2014) 

Bobo-Dioulasso, 
Burkina Faso; 
Aug-Nov 2011 

UTN, Permanet2.0 (0W) 108 6 m=2.2, k=0.34 24hrs 0.69 

0.0113 

0.10 0.13 

Toé et al. (Toé et 
al. 2018) 

Bobo-Dioulasso 
Burkina Faso; 
Sep-Oct 2014 

 

UTN, DawaPlus2.0 (0W), 
Olyset (0W), OlysetPlus (0W), 
Permanet2.0 (0W), 
Permanet3.0 (0W) 

216 6 m=32.5, k=0.94 24hrs 0.67 

<2.2e-16 

0.18 0.05 

Toé et al. (Toé et 
al. 2018)  

Tengrela, 
Burkina Faso; 
Sep-Oct 2014 

 

UTN, DawaPlus2.0 (0W), 
Olyset (0W), OlysetPlus (0W), 
Permanet2.0 (0W), 
Permanet3.0 (0W) 

216 6 m=20.3, k=1.42 24hrs 1.21 

<2.2e-16 

0.10 0.04 

N’Guessan et al. 
(WHOPES 2016) 

M’Be, Côte 
d’Ivoire 2015 

UTN, alphacyp (1W), MAGNet 
(0W, 20W), Veeralin (0W, 
20W) 

216 6* m=16.6, k=0.84 24hrs 0.62 

<2.2e-16 

- - 

Unpublished data 
from Antoine 
Sanou 

Sep-Oct 2019; 
Banfora, Burkina 
Faso 

UTN, InterceptorG2 (0W, 
20W), Permanet2.0 (0W), 
Permanet3.0 (0W, 20W) 

213 6 m=17.9, k=2.28 24hrs, 72hrs 1.00  

<2.2e-16 

0.14 0.5 



 
 

3 

Unpublished data 
from Antoine 
Sanou 

Nov-Dec 2019; 
Banfora, Burkina 
Faso 

UTN, Interceptor (0W), 
InterceptorG2 (0W, 20W), 
Permanet3.0 (0W), 
RoyalGuard (0W) 

123 6 m=6.2, k=1.03 24hrs, 72hrs 0.26 

0.0738 

0.08 0.19 

Tungu et al. 
(Tungu et al. 
2021) 

Muheza, 
Tanzania 

UTN, Dawa4.0 (0W), 
Permanet3.0 (0W, 20W), 
Veeralin (0W, 20W) 

216 6 m=9.1, k=2.79 24hrs 1.32 

<2.2e-16 

- - 

Unpublished data 
from Sarah 
Moore 

Aug-Sep 2018; 
Ifakara, Tanzania 

UTN, DawaPlus (0W, 20W), 
TsaraNet (0W, 20W),  

500 10 m=22.0, k=0.33 24hrs 0.62 

<2.2e-16 

0.02 0.04 

Ngufor et al. 
(Ngufor et al. 
2017) 

Jun-Sep 2015; 
Cove, Benin 

UTN, Interceptor (0W), 
InterceptorG2 (0W) 

137 3* m=5.4, k=2.09 72hrs 2.34 

1.55e-15 

- - 

Unpublished data 
from Mark 
Rowland 

Sep-Dec 2014; 
Moshi, Tanzania 

UTN, chlorfenapyr (0W), 
Interceptor (0W, 20W), 
InterceptorG2 (0W, 20W)  

301 7 m=1.6, k=0.84 72hrs 2.96 

9.98e-08 

0.52 0.09 

Unpublished data 
from Mark 
Rowland 

Dec 2015-Feb 
2016; Muheza 
Tanzania 

UTN, chlorfenapyr (0W), 
Interceptor (0W, 20W), 
InterceptorG2 (0W, 20W) 

324 6 m=1.8, k=0.84 72hrs 1.28 

0.000101 

0.03 0.06 

Unpublished data 
from Mark 
Rowland 

Muheza, 
Tanzania 

UTN, chlorfenapyr (0W), 
Interceptor (0W, 20W), 
InterceptorG2 (0W, 20W) 

216 6* m=2.4, k=0.93 72hrs 2.43 

4.51e-09 

 

- - 

Ngufor et al. 
(2022) (Ngufor et 
al. 2022) 

Cove, Benin; 
Feb-April 2017 

UTN, Olyset (0W, 20W), 
OlysetPlus (0W, 20W), 
Permanet 3.0 (0W, 20W) 

294 7 m=22.8, k=1.6 24hrs 1.05 

<2.2e-16 

0.15 <0.01 

Unpublished data 
from Mark 
Rowland 

Benin 2014.  UTN, chlorfenapyr (0W), 
Interceptor (0W, 20W), 
InterceptorG2 (0W, 20W) 

258 6* m=7.1, k=1.66 72hrs 0.56 

8.80e-11 

- - 
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Supplementary Table 1:  Summary of the experimental hut trials analysed in this study. For each study, we list the ITNs evaluated, time period of data 
collection, the number of data points recorded, and the number of huts used. For the mosquito count data, we first checked whether the data from each 
study was better described by a Poisson or negative-binomial distribution (all count data were better described by the latter). The proportion of mosquitoes 
killed in each arm of a study was assessed using a GLMM (Methods). If a dataset contained individual-level data on the corresponding hut and sleeper for 
each data point, hut and sleeper were included as random effects. If not, observation was the only random effect included and, in those studies, may 
include variation due to huts and sleepers. For datasets that assessed mosquito mortality at two time points, the later time point was used for the 
regression modelling. *Individual-level information on huts and sleepers not available for these studies. The number of washes is denoted by 0W or 20W 
for zero or twenty washes, respectively.  Arithmetic means are provided, with lower values of k indicating more overdispersed count data. 

* P-value obtained from a Likelihood Ratio Test,  test statistic follows a chi-squared distribution with 1 degree of freedom. 
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Supplementary Figure 1: Simulated experimental hut trial showing estimates of mortality due to an 
ITN with and without accounting for the observation-level random effect. In this scenario, we 
simulated an experimental hut trial, with observation-level variation (!!" = 1) present in the data-
generating process of strength comparable to past studies (Figure 3, Supplementary Table 1). We 
calculated two estimates of the mosquito mortality (with 95% confidence intervals), using a fixed-
effects model (red) and a mixed-level model, containing an observation-level random effect (blue). 
For unlimited data, the two estimates should align: for small dataset, the differences are quite 
apparent. The estimate from the fixed-effects model has much narrower confidence intervals which, 
in this example, do not always contain the true value of mosquito mortality used in the simulation 
(0.5, indicated by the grey line). In contrast, the estimate from the multi-level regression model has 
much wider confidence intervals and is more consistent with the true value of the mortality 
parameter. In this scenario, data was generated for a one-hut trial, so no between-hut or -sleeper 
variation was generated. Note that the number of data points considered (nights of mosquito 
collection, x axis) is shown on a log scale. The number of mosquitoes entering the hut each night 
followed a negative binomial distribution with a mean of 10 and a dispersion parameter equal to 2. 

 
 
 



Tutorial: Analysing data from experimental hut trials

A brief introduction to R

The code included in this tutorial is written in R. We do not include a comprehensive intro-
duction to R, as many others are available elsewhere. However, we will include a few brief
comments on the syntax of R. Variables (be they numbers, or character strings) can be stored
in the internal memory using either = or <-. For example, writing x<-5 assigns a value of 5
to x. The symbol # is used to indicate a comment. That is, anything that follows a # will not
be read as R code.

R contains a number of core functions, which carry out commonly used operations. Addi-
tional functions can be found within packages. A package can be loaded using the library()
function. For example, we can load the ggplot2 package, which is a versatile library for making
graphs, by running the following command:

> library(ggplot2)

If you have not used this package before, you may need to download it. You can do this by
running the command install.packages(‘ggplot2’). Alternatively, if you’re using Rstudio,
you can click on the ‘Tools’ menu, then click on ‘Install packages...’, and search for the desired
package.

1 Loading & summarising a dataset

In this document, we will demonstrate how to carry out the statistical analyses discussed in
the main manuscript. To demonstrate these concepts, we will use a simulated dataset1. This
dataset has been uploaded with these materials, along with an R script containing the work
outlined in this tutorial. To run the R script you should download R & RStudio. If you wish
to run the script, you should download the ZIP file, and extract the folder. Then, double-click
on the project file EHT_Visualise.Rproj to open it in RStudio.

Once the R project file is open, you can then open the R script script_for_tutorial.R.
The dataset has been stored as an .rds file, and can be loaded using the following command:

> df <- readRDS(‘data_for_plot.rds’)

Let’s take a look at the data:

> dim(df)
[1] 343 10

1
The code and data used here can be found at: https://github.com/JDChallenger/EHT_Visualise.
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> head(df)
day hut sleeper treatment total unf_live unf_dead bf_live bf_dead tot_dead

1 1 1 2 C 9 7 0 2 0 0
2 1 2 3 N1u 3 3 0 0 0 0
3 1 3 4 N1w 3 3 0 0 0 0
4 1 4 5 N2u 5 3 1 0 1 2
5 1 5 6 N2w 12 11 1 0 0 1
6 1 6 7 N3u 32 16 8 6 2 10

For this experimental hut trial (EHT), 343 data points were collected. For each of these,
the total number of mosquitoes entering each hut each night was recorded, as well as their
mortality & blood-feeding status (unf_live = unfed & alive; unf_dead = unfed & dead;
bf_live = blood fed & live; bf_dead = blood fed & dead). As the following commands tell
us, the trial contained 7 different nets, 7 volunteers, and 7 huts:

> table(df$treatment)

C N1u N1w N2u N2w N3u N3w
49 49 49 49 49 49 49

> table(df$hut)

1 2 3 4 5 6 7
49 49 49 49 49 49 49
> table(df$sleeper)

1 2 3 4 5 6 7
49 49 49 49 49 49 49

This EHT contains an untreated net (labelled ‘C’ for control) and three insecticide-treated
nets (ITNs), labelled N1, N2 and N3. The suffix ‘u’ indicates an unwashed (i.e. new) ITN; the
suffix ‘w’ indicates a washed (i.e. aged) ITN.

2 Visualising the EHT data

Figure 1 shows some output from 3-arms of the simulated trial, namely the untreated control,
and both unwashed and washed N1 nets. The R code that accompanies this document shows
how these panels may be generated.
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3 Fitting a regression model to the data

We’ll now show how to fit the regression model shown in Equation 1 in the main text. As this
model contains an observation-level random effect, we first need to provide a unique indicator
variable for each row in the data frame e.g.

df$observation <- factor(formatC(1:nrow(df), flag="0", width=3))

For mortality, we

>fit <-
glmer(

cbind(tot_dead, total - tot_dead) ~
treatment + (1 | hut) + (1 | sleeper) + (1 | observation),

family = binomial, data = df)

This is equivalent to the equation we wrote down in the main text, which we also include
here, for convenience:

log

✓
pijk

1� pijk

◆
= �0 +

X

m

�m + bi + hj + vk. (1)

Here we characterise each data point using the subscripts (i, j, k). Subscript i uniquely iden-
tifies each data point, j indicates the hut used, k indicates the volunteer sleeping under the
net. Then we run the command summary(fit) to examine the fitted model. This output is
quite lengthy: here we will focus on the fixed and random effects. The former will look like
this:

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.1093 0.2533 -12.276 < 2e-16 ***
treatmentN1u 2.2484 0.2331 9.647 < 2e-16 ***
treatmentN1w 1.7157 0.2354 7.290 3.11e-13 ***
treatmentN2u 2.1026 0.2327 9.034 < 2e-16 ***
treatmentN2w 1.4804 0.2358 6.280 3.40e-10 ***
treatmentN3u 2.3913 0.2314 10.332 < 2e-16 ***
treatmentN3w 1.5985 0.2356 6.784 1.17e-11 ***

An estimate for each of the fixed effects is provided, along with its standard error, which
indicates the level of precision with which each parameter has been estimated. The z & p
values relate to testing whether the parameter estimates are significantly different from 0.
It is not immediately obvious how these parameter values relate to our problem: working
out the proportion of mosquitoes killed (or blood fed) in each trial arm. This is because a
binomial regression like this has been carried out by transforming the proportions onto the
log-odds scale. This transformation maps the interval [0,1] (used for proportions, prevalence,
or probabilities) to the interval [�1,1]. This removes the difficulty caused by the fact that
the probability scale (which runs from 0 to 1) has a floor and ceiling i.e. values below 0 and
above 1 are forbidden.

The estimated values of the random effects will be presented like this:

9



Random effects:
Groups Name Variance Std.Dev.
observation (Intercept) 0.24663 0.4966
sleeper (Intercept) 0.04405 0.2099
hut (Intercept) 0.14988 0.3871

Number of obs: 343, groups: observation, 343; sleeper, 7; hut, 7

By definition, all the random effects are normally distributed with zero mean. Therefore,
they are fully characterised by the values of the variance (or, equivalently, the standard
deviation). Aside: The observation-level random-effect is included in order to account for
any overdispersion in mosquito mortality. To check whether this term needs to be included,
we can look at the model that drops this term, and compare the two models using a Likelihood
Ratio Test (LRT). The simpler model fit0 is:

>fit0 <-
glmer(

cbind(tot_dead, total - tot_dead) ~
treatment + (1 | hut) + (1 | sleeper),

family = binomial, data = df)

The LRT is carried out using the anova function:

> anova(fit,fit0)
Data: df
Models:
fit0: cbind(tot_dead, total - tot_dead) ~ treatment + (1 | hut) + (1 | sleeper)
fit: cbind(tot_dead, total - tot_dead) ~ treatment + (1 | hut) + (1 | sleeper) + (1 | observation)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
fit0 9 1141.4 1175.9 -561.70 1123.4
fit 10 1117.7 1156.1 -548.87 1097.7 25.67 1 4.051e-07 ***

We consider a p value ’Pr(>Chisq)’ <0.05 to indicate a signficant improvement in model fit.
Therefore, we use the complicated model in our analyses. The same is true in almost all of
the real EHT datasets (Supplementary Table 1). End of Aside

In order to understand the output of the regression model, we will use the inverse of this
log-odds transformation. If X(p) denotes the log-odds-transformed proportion, we write

X(p) = log

✓
p

1� p

◆
.

Note that, on the log-odds scale, values can be positive or negative. A value of 0 corresponds
to p = 0.5. We can write the inverse function like this:

p = InvLogit(X) =
exp(X)

exp(X) + 1

Figure 2 shows this function, which approaches 1 as X ! 1, and approaches 0 as X ! �1.
In R, we will define a function to carry out this transformation, as we will be using it frequently.
We write
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InvLogit <- function(X){
exp(X)/(1+exp(X))

}

Let’s use this function to find the mortality in the control arm (where untreated nets were
used). This is indicated by the intercept in the regression model.

InvLogit(coef(summary(fit))["(Intercept)", "Estimate"])
0.04272482

Furthermore, we can use the standard error to create a 95% confidence interval. We do this
by adding or subtracting 1.96⇥ the standard error, before converting to a probability:

InvLogit(coef(summary(fit))["(Intercept)", "Estimate"]+
c(-1,1)*1.96*coef(summary(fit))["(Intercept)", "Std. Error"])
[1] 0.02644880 0.06831393

Let’s now estimate the mortality in one of the arms containing an ITN. To find the estimated
mortality due to unwashed ‘N1’ nets we perform this calcualation:

InvLogit(coef(summary(fit))["(Intercept)", "Estimate"] +
coef(summary(fit))["treatmentN1u", "Estimate"])
[1] 0.2971546

This follows from Eq, 1: we have to add the value of the fixed effect parameter to the inter-
cept (�0) before applying the transformation to the probability scale. We can also generate
confidence intervals for this estimated mortality. Strictly speaking we should use the standard
errors of both parameter estimates here, and respect the fact that they may be correlated with
each other. The variance-covariance matrix for the fixed-effects parameters can be accessed
with the vcov() function. To calculate the mortality of the unwashed N1 ITN, we had to add
together two regression parameters. We can use the standard errors to calculate the standard
error in their sum (using results for normally-distributed random variables).

rho1_2 <- vcov(fit)[1,2]/(sqrt(vcov(fit)[1,1])*sqrt(vcov(fit)[2,2]))
sigma1_2 <- sqrt(vcov(fit)[1,1] + vcov(fit)[2,2] +

2 * rho1_2 *(sqrt(vcov(fit)[1,1]) *(sqrt(vcov(fit)[2,2]))))

The R code in the repository that accompanies this article contains some useful functions
to summarise the mortality estimates and their confidence intervals.

For some analyses, we will want to group washed & unwashed nets of the same type
together. We do this by introducing a new variable ‘net’.

> df$net <- NA
> df[df$treatment==‘C’,]$net <- ‘C’
> df[df$treatment==‘N1u’,]$net <- ‘N1’
> df[df$treatment==‘N1w’,]$net <- ‘N1’
> df[df$treatment==‘N2u’,]$net <- ‘N2’
> df[df$treatment==‘N2w’,]$net <- ‘N2’
> df[df$treatment==‘N3u’,]$net <- ‘N3’

11
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Figure 2: Relationship between the log-odds and probabilty scales. The function is symmetric
about 0, which corresponds to a probability of 0.5. The probability approaches 1 as the log-
odds value becomes very large (technically, we say ‘as it tends to infinity’). Similarly, the
probability goes to 0 as the log-odds value tends to minus infinity.

> df[df$treatment==‘N3w’,]$net <- ‘N3’
> table(df$net, useNA = ’a’)

C N1 N2 N3 <NA>
49 98 98 98 0

We can then fit this model like this:

> fit_n <-
+ glmer(
+ cbind(tot_dead, total - tot_dead) ~
+ net + (1 | hut) + (1 | sleeper) + (1 | observation),
+ family = binomial, data = df)

You can use the summary() function to analyse the output.

4 Deterrence

In EHTs, it is often observed that fewer mosquitoes are collected in huts containing ITNs,
compared to those containing untreated nets. This phenomenon is known as ‘deterrence’. We
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can examine whether or not this is the case for our dataset by calculating the mean number
of mosquitoes observed across all the different trial arms:

tapply(df$total, df$treatment, mean)
C N1u N1w N2u N2w N3u N3w

15.408163 9.204082 10.102041 10.163265 11.428571 9.142857 11.122449

In this EHT, it appears that fewer mosquitoes entered huts containing ITNs, compared with
those containing the untreated nets. We will use a different type of regression model to
examine this. This is because we will be dealing with mosquito count data, rather than
looking at proportions (e.g. proportion of mosquitoes killed or blood fed). Count data can be
analysed by using a Poisson distribution, or a two-parameter distribution, such as the negative
binomial. The latter is used when the count data are overdispersed, i.e. the standard deviation
of the data is greater than its mean value. It is possible to perform a statistical test (see R
script script_for_tutorial.R, Section 4), to see which distribution to use. However, in our
experience with EHT trials, the data are almost always overdipsersed. Therefore, we will
use the negative binomial distribution in this document. We perform a negative binomial
regression using the function glmer.nb(), also from the lme4 package.

fit_nb <- glmer.nb(total ~ treatment + (1|hut), data = df)
summary(fit_nb)

(Note that here we’ve dropped the random-effect for ‘sleeper’, as it produced a singular model
fit, with a estimated variance very close to 0. Let’s look at the (truncated) model output:

Random effects:
Groups Name Variance Std.Dev.
hut (Intercept) 0.01059 0.1029

Number of obs: 343, groups: hut, 7

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.7263 0.1057 25.784 < 2e-16 ***
treatmentN1u -0.5126 0.1420 -3.609 0.000307 ***
treatmentN1w -0.4113 0.1415 -2.908 0.003642 **
treatmentN2u -0.4239 0.1416 -2.993 0.002758 **
treatmentN2w -0.2937 0.1406 -2.089 0.036717 *
treatmentN3u -0.5212 0.1421 -3.668 0.000244 ***
treatmentN3w -0.3291 0.1408 -2.337 0.019446 *

Note that all the fixed-effect parameters are negative, since fewer mosquitoes enter huts
containing an ITN, relative to the control. To understand the numerical values presented here,
we must appreciate that the counts have been log-transformed. If we take the exponential of
the intercept we find:

exp(coef(summary(fit_nb))["(Intercept)", "Estimate"])
[1] 15.27638

This value is extremely close to the mean mosquito count found in the control arm (see above).
The regression model will also return an estimate of the dispersion parameter:
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getME(fit_nb, "glmer.nb.theta")
[1] 2.464817

Let’s now calculate the mean number of mosquitoes per night in huts contained unwashed N1
nets:

exp(coef(summary(fit_nb))["(Intercept)", "Estimate"]+
coef(summary(fit_nb))["treatmentN1u", "Estimate"])
[1] 9.149449

We can use these values to estimate the deterrence effect in terms of a percentage:

mean_C <- exp(coef(summary(fit_nb))["(Intercept)", "Estimate"])
mean_E1 <- exp(coef(summary(fit_nb))["(Intercept)", "Estimate"]+
100*(1-mean_E1/mean_C)
[1] 40.10722

5 Superiority trials

Frequently in EHTs, we are interesting in seeing if one type of bednet is superior to another,
in terms of e.g. mosquito mortality or blood-feeding inhibition. This could be a comparison
between an ITN and the untreated control, or a comparison between two ITNs. When the
logistic regression model is fitted in lme4, a p value for a Wald Z-test is returned, along with
the estimates of the value of each fixed effect. This p value stems from a null hypothesis that
the value of the fixed effect is 0 (or, alternatively, the mortality odds ratio for a particular
ITN relative to the untreated control is equal to 1). Let’s recap the output for the fixed-effect
parameters shown in the previous section:

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.1093 0.2533 -12.276 < 2e-16 ***
treatmentN1u 2.2484 0.2331 9.647 < 2e-16 ***
treatmentN1w 1.7157 0.2354 7.290 3.11e-13 ***
treatmentN2u 2.1026 0.2327 9.034 < 2e-16 ***
treatmentN2w 1.4804 0.2358 6.280 3.40e-10 ***
treatmentN3u 2.3913 0.2314 10.332 < 2e-16 ***
treatmentN3w 1.5985 0.2356 6.784 1.17e-11 ***

Here we can see whether differences in mortality between the untreated control and any of
the ITNs are judged to be significant. However, it is not immediately obvious how to test
for superiority of one ITN compared to another. The simplest way to proceed is to change
which net is chosen as the intercept in the regression model. By default, lme4 will choose
the first value, ordering the options alphabetically. One way to change the trial arm used for
the intercept is to rename one of the treatment arms, so that it becomes the first category
(i.e. in alphabetical order) e.g. df[df$treatment==’N1u’,]$treatment <- ’A’. However,
it would be better to avoid this, as re-labelling the trial arms can introduce confusion. One
way forward is to make treatment a factor variable in R, and modify the order of the levels
in the factor. Suppose that we wish to test whether unwashed N2 nets (N3u) are superior to
unwashed N1 nets (N2u). We begin by making the latter the 1st level in the factor,
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df$treatment <- as.factor(df$treatment)
#First check the current levels of the factor
levels(df$treatment)
> levels(df$treatment)
[1] "C" "N1u" "N1w" "N2u" "N2w" "N3u" "N3w"
#Make unwashed N1 nets the intercept category
df$treatment <- relevel(df$treatment,"N2u")
#check the levels again
levels(df$treatment)
> levels(df$treatment)
[1] "N2u" "C" "N1u" "N1w" "N2w" "N3u" "N3w"

Once this has been carried out, we can run the regression analysis again, and find the desired
p value. The section of the model output relating to the fixed-effects now looks like this:

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0068 0.2142 -4.701 2.59e-06 ***
treatmentC -2.1026 0.2327 -9.034 < 2e-16 ***
treatmentN1u 0.1459 0.1901 0.768 0.44277
treatmentN1w -0.3868 0.1953 -1.981 0.04757 *
treatmentN2w -0.6222 0.1950 -3.190 0.00142 **
treatmentN3u 0.2887 0.1885 1.531 0.12574
treatmentN3w -0.5040 0.1938 -2.601 0.00930 **

Notice that the P value for the fixed effect treatmentN3u is not signficant (>0.05). By
default, the glmer() model will output p values for a Wald z test. We will use this for
our power analysis, as it is the quickest test to perform. The Wald test assumes that the
log-likelihood is quadratic. Alternatively, we could use a Likelihood Ratio Test (LRT). To
illustrate this simply, let’s look at a subset of the data, pertaining only to the two trial arms
in question (N2u,N3u):

df2 <- df[df$treatment==’N2u’|df$treatment==’N3u’,]

Let’s look at the ’full model’, which assumes a fixed effect is needed i.e. mosquito mortality
is different across the two trial arms. On this smaller dataset, we’ve just included one of the
random-effects, for simplicity:

fit2 <-
glmer(

cbind(tot_dead, total - tot_dead) ~
treatment + (1 | observation),

family = binomial, data = df2)

The simpler model assumes that the fixed effect is not needed

fit3 <-
glmer(

cbind(tot_dead, total - tot_dead) ~
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(1 | observation),
family = binomial, data = df2)

We run the anova function (anova(fit2,fit3)), which returns the following output:

> anova(fit2,fit3)
Data: df2
Models:
fit3: cbind(tot_dead, total - tot_dead) ~ (1 | observation)
fit2: cbind(tot_dead, total - tot_dead) ~ treatment + (1 | observation)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
fit3 2 367.42 372.59 -181.71 363.42
fit2 3 367.31 375.06 -180.66 361.31 2.1151 1 0.1459

This returns a p value for a chi-squared test (if the null hypothesis is rejected, the more
complicated model–fit2– is justified). In this instance, the Wald test & the LRT are in
agreement that there is not a significant difference between the mosquito mortality induced
by unwashed N2 nets and unwashed N3 nets. If we did find discordance between the two
tests, we could investigate further using bootstrapping to more precisely estimate the 95%
confidence interval for the fixed effect:

> confint(fit2, method = "boot", nsim = 1000, parm = "beta_")
Computing bootstrap confidence intervals ...

2.5 % 97.5 %
(Intercept) -1.3362054 -0.6975908
treatmentN3u -0.1114323 0.7553065

Again this calculation indicates that the confidence interval for the fixed-effect cross zero (i.e.
not significant). Note, however, that this procedure takes much longer to perform.

To examine whether the confidence intervals for a parameter estimate are symmetrical
about the central estimate, we can plot the LRT statistic with respect to the fitted param-
eter(s). The test statistic here is the change in the model deviance, which is -2 times the
log-likelihood. If the confidence intervals for a parameter estimate are symmetric, the LRT
statistic should be quadratic with respect to the parameter in question. Here we can use
the profile() function, which returns the square root of the LRT statistic, since it is more
straightforward to check whether the plot follows a straight line (compared to a quadratic
curve). To this end, profile() also returns the negative square root to the left of the pa-
rameter estimate. We can view the fixed effects in model fit2 using the following commands
(see Figure 3A)

trp <- profile(fit2, which = ’beta_’)
lattice::xyplot(trp)
#lattice::xyplot(trp, absVal = TRUE) #This would omit the negative square
#root to the left of the parameter estimate

The plotted quantity for each parameter (indicated with ⇣ in Figure 3A) can be compared
with the standard normal distribution. This means that the profile plots can be converted to
density plots. We’ll demonstrate this using the parameter for N3u:
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Figure 3: Profile plots & probability density of a parameter estimate. Panel A: The signed
square root of the LRT statistic, for a GLMM of data subset containing only two trial arms
(N2u, N3u). These curves closely resemble straight lines, indicating that the confidence
intervals for these parameters should be symmetric. Panel B: The equivalent density plot for
the value of parameter N3u. Parameter ⇣, plotted in panel A, can be compared to a standard
normal distribution. This means that we can use the plot for ⇣ to find the distribution for
the parameter estimates. Here we illustrate this using the fixed-effect parameter N3u.

#First we extract the relevant data:
dfr <- data.frame(’p’ = trp[trp$.par==’treatmentN3u’,]$treatmentN3u,

’sl’ = trp[trp$.par==’treatmentN3u’,]$.zeta)
# convert \zeta to a density function
dfr$dens <- dnorm(dfr$sl,mean=0,sd=1)
#Here’s the plot, with the central estimate (dashed orange line) taken
#from the regression model
ggplot(dfr, aes(x=p,y=dens)) + geom_line() + geom_point() + theme_classic() +

xlab(’Parameter N3u’) + ylab(’Probability Density’) +
geom_vline(xintercept = coef(summary(fit2))["treatmentN3u", "Estimate"],

color = ’orange’, linetype = ’dashed’, alpha = .5)

The density function is plotted in Figure 3B. To summarise this section: the simple Wald
test is quick to perform, and should perform well enough for power estimates, in which a
large number of simulated datasets need to be assessed. When presenting real data from an
EHT, however, the assumptions underlying the Wald test should be checked, either using
bootstrapping estimates, or via a LRT, as shown here.

17



6 Non-inferiority trials

In this section, we show how to use the output of the regression model to make an assessment
of whether one ITN is non-inferior to another (e.g. in terms of mosquito mortality or blood-
feeding inhibition). In order to do this, a non-inferiority margin (NIM) must be selected.
This should be chosen before the trial is started. According to World Health Organisation
guidelines, the non-inferiority assessment should be made based on the odds ratio of the two
products, and a NIM of 0.7 should be used for mosquito mortality (1.43 for blood-feeding
inhibition). As with superiority trials, it is more straightforward if the comparator net is the
reference category in the regression model. Let’s test whether the ITN N3 is non-inferior to
N2. We will use the net variable we defined earlier for this. In other words, we are comparing
the mortality averaged across washed and unwashed nets of the same type. (Note: this should
only be done if there are an equal number of data points in the washed and unwashed arms.
Otherwise, the two arms will be unfairly weighted.) Let’s ensure that the net variable is a
factor variable and make N2 the default category (i.e. the intercept).

df$net <- as.factor(df$net)
#check the levels
levels(df$net)
#relevel
df$net <- relevel(df$net,"N2")
#check the levels again
levels(df$net)

Now, if we run the regression model, the output for the fixed-effects should look like this:

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.3314 0.1977 -6.734 1.65e-11 ***
netC -1.8128 0.2218 -8.174 2.98e-16 ***
netN1 0.1905 0.1457 1.307 0.191
netN3 0.2065 0.1444 1.430 0.153

The odds ratio of the mortality induced by N3 compared to N2 is:

exp(coef(summary(fit_n))[’netN3’,’Estimate’])
[1] 1.229333

Then, we use the standard error to find the 95% confidence intervals

> exp(coef(summary(fit_n))[’netN3’,’Estimate’] -
1.96*coef(summary(fit_n))[’netN3’,’Std. Error’])
[1] 0.9263213
> exp(coef(summary(fit_n))[’netN3’,’Estimate’] +
1.96*coef(summary(fit_n))[’netN3’,’Std. Error’])
[1] 1.631465

We note that this interval lies entirely above the NIM. This means that we can say that N3
is non-inferior to N2, in terms of mosquito mortality.
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7 Simulate trials to aid power calculations

Before carrying out an EHT, we should consider whether the trial is well-powered to answer
the research question that is under consideration. Let’s consider an example, where an EHT
will be carried out to assess whether or not a novel ITN (‘E2’) is superior to a standard
pyrethroid-only product (‘E1’). We can use simulation-based methods to generate an estimate
of trial power. When we simulate trials, we can select the average mortality induced by the
ITNs. Let’s imagine that we expect the pyrethroid-only net to kill 30% of mosquitoes (this
value could be estimated from previous studies in the same region, or a different region with
a similar level of pyrethroid resistance in the wild mosquito population). We may be unsure
what mortality to expect in our novel product, but we could pose the question: what would
be the smallest improvement that would be worth measuring? If this is a difference of 10%, we
set the mortality of the novel ITN to be 40%. The next step is, for the proposed trial design,
is to simulate the trial and see if the new net is judged to be superior to the pyrethroid-only
ITN. As the simulation will be random, it is necessary to simulate many trials (say 500 or
1000), and calculate the proportion of trials for which a verdict of superiority is reached. This
will form our power estimate.

Our work builds on a paper by Johnston et al., published in Methods in Ecology and
Evolution in 2015 (doi:10.1111/2041-210X.12306). In that article, the authors presented a
tool (which is written as a function in R) which can simulate a range of GLMMs, including
the logistic regression models considered here. We will utilise their R function simm.glmm, to
simulate an EHT. But first we must specify the trial design in R. Here we describe a seven-arm
trial, containing 7 nets: an untreated control (“C") and 6 ITNs. Following Johnston et al. we
rotate the nets around the huts each week:

latsq <-
rbind(

c("C", "E1", "E2", "E3", "E4", "E5", "E6"),
c("E6", "C", "E1", "E2", "E3", "E4", "E5"),
c("E5", "E6", "C", "E1", "E2", "E3", "E4"),
c("E4", "E5", "E6", "C", "E1", "E2", "E3"),
c("E3", "E4", "E5", "E6", "C", "E1", "E2"),
c("E2", "E3", "E4", "E5", "E6", "C", "E1"),
c("E1", "E2", "E3", "E4", "E5", "E6", "C"))

colnames(latsq) <- paste("hut", 1:nrow(latsq), sep = "")
rownames(latsq) <- paste("week", 1:ncol(latsq), sep = "")
latsq

hut1 hut2 hut3 hut4 hut5 hut6 hut7
week1 "C" "E1" "E2" "E3" "E4" "E5" "E6"
week2 "E6" "C" "E1" "E2" "E3" "E4" "E5"
week3 "E5" "E6" "C" "E1" "E2" "E3" "E4"
week4 "E4" "E5" "E6" "C" "E1" "E2" "E3"
week5 "E3" "E4" "E5" "E6" "C" "E1" "E2"
week6 "E2" "E3" "E4" "E5" "E6" "C" "E1"
week7 "E1" "E2" "E3" "E4" "E5" "E6" "C"
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Now we make a data frame, in which we’ll store the data:

mosdata <-
expand.grid(
hut = factor(1:ncol(latsq)),
week = factor(1:nrow(latsq)),
night = factor(1:7)
)

mosdata <- mosdata[order(mosdata$hut, mosdata$week, mosdata$night),]

mosdata$net <- factor(diag(latsq[mosdata$week, mosdata$hut]))

And we also need to specify where the volunteers will sleep each night.

aux <- rep(0,49) #enough data pts for a week
for(k in 1:7){ #Move the volunteers each night

aux[(7*(k-1)+1):(7*(k-1)+7)] <- c( k : 7 , seq_len(k-1) )
}
#repeat for all 7 weeks
mosdata$sleeper <- factor(rep(aux,7))
#Summarise data
table(mosdata$hut)
table(mosdata$net)
table(mosdata$sleeper)

Run the command View(mosdata) to take a look at the full dataset. We now add an identifier
for each observation. We’ll also define a variable n, for the number of mosquitoes entering
each hut each night:

mosdata$observation <- factor(formatC(1:nrow(mosdata), flag="0", width=3))
mosdata$n <- 25 #Could also be random e.g.
#mosdata$n <- rnbinom(dim(mosdata)[1], mu = 10, size = 2)

Now we have the data frame needed to simulate a trial using the sim.glmm function. The
mortality in the reference category should be entered on the log-odds scale (we can use the
built-in function qlogis for this). The mortalities in the other arms should be entered as
odd ratios. The random-effects should be described in terms of their variance (not standard
deviation). Here we show an example of using the function on our data frame mosdata. We
start by defining some odds ratios. Only E1 and E2 are involved in the power analysis, so it
doesn’t matter what we put for the other ITNs

OR1 <- (0.3/(1-0.3))/(0.05/(1-0.05))
OR2 <- (0.4/(1-0.4))/(0.05/(1-0.05))

mosdata <-
sim.glmm(design.data = mosdata,

fixed.eff = list(
intercept = qlogis(0.05),
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net = log(c(C = 1, E1 = OR1, E2 = OR2, E3 = OR2,
E4 = OR2, E5 = OR2, E6 = OR2))),

rand.V = c(hut = 0.3, sleeper = 0.3, observation = 0.8),
distribution = "binomial")

If we look again at our data frame, we can see a new variable called response has been added.
This shows how many mosquitoes have been killed each night.

> head(mosdata)
hut week night net sleeper n observation response

1 1 1 1 C 1 25 001 1
50 1 1 2 C 2 25 002 6
99 1 1 3 C 3 25 003 5
148 1 1 4 C 4 25 004 0
197 1 1 5 C 5 25 005 2
246 1 1 6 C 6 25 006 0

Now, we can write a function to simulate a trial, and then make the superiority assessment.
The function will return a value of 1 if superiority is found and a value of 0 if it isn’t.

sim_sup <- function(...){
#Enter fixed effects as odds ratios (compared to the control [intercept]).
#Write the intercept on the log-odds scale
OR1 <- (0.3/(1-0.3))/(0.05/(1-0.05))
OR2 <- (0.4/(1-0.4))/(0.05/(1-0.05))

mosdata <-
sim.glmm(design.data = mosdata,

fixed.eff = list(
intercept = qlogis(0.05),
net = log(c(C = 1, E1 = OR1, E2 = OR2, E3 = OR2,
E4 = OR2, E5 = OR2, E6 = OR2))),

rand.V = c(hut = 0.3, sleeper = 0.3, observation = 0.8),
distribution = "binomial")

#For the superiority test, should make E1 the intercept net
mosdata2 <- mosdata
#relevel
mosdata2$net <- relevel(mosdata2$net,"E1")

fit_model <-
glmer(

cbind(response, n - response) ~
net + (1 | hut) + (1 | sleeper) + (1 | observation),

family = binomial, data = mosdata2)

if(coef(summary(fit_model))["netE2", "Pr(>|z|)"] <0.05 &
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coef(summary(fit_model))["netE2","Estimate"]>0){
1

}else{
0

}
}

The function can be run using sim_sup(). However, as the simulation process is random, a
large number of trials should be simulated. The trial power is then the proportion of trials in
which superiority is demonstrated. Here we show how to simulate 100 trials:

nsim <- 100
simulations <- sapply(1:nsim, sim_sup)
print(paste0(’Power Estimate: ’,100*sum(simulations)/length(simulations),’%’))

How many trials should be simulated will depend on the level of precision required for the
power estimate. This can be found from the confidence intervals of the power estimate:

binom.test(table(factor(simulations,c(1,0))))$conf.int
[1] 0.5792331 0.7697801

This confidence interval is quite wide, indicating that more than 100 simulations should be
used. For example, you could try re-running for 1000 simulations, and then check the width
of the confidence intervals.

In the github repository(https://github.com/JDChallenger/EHT_Visualise), there is a
file called power_calculator_user_script.R. This can be used to generate a power estimate
for an experimental hut trial, as specified by the user. Separate functions are provided for
evaluation of trials for ITNs & IRS (indoor residual spraying).
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